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Abstract

A remote sensing campaign was conducted over a U.S. Department of Agriculture test
farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially
treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha
increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne
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Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data k}m"éfcollected over the site
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in 224 bands. Simultaneously, ground data w43 collected to support the airborne imagery. In an

effort to reduce data load while maintaining or enhancing aigorithm performance for vegetation

stress detection, band-moment compression and analysis was applied to the AVIRIS image cube.
d |

The results indicate that band-moment techniques compress the AVIRIS dataset significantly

while retaining the capability of detecting environmentally induced vegetation stress.

Potential Applications/Areas

Data Compression, Earth Remote Sensing, Anomaly Detection




1.0 Introduction

The objective of this research was to employ band-moment compression of an Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral image cube while retaining an
ability to detect crop stress with the resulting imagery. In particular, nutrient stress detection is of
primary importance. Nutrient stress is often a chief consideration when variation in plant
pigmentation is observed (Schepers et al. 1996; Maas and Dunlap, 1989).

The relevant test site was the U.S. Department of Agriculture’s (USDA’s) Shelton,
Nebraska, Variable Rate (VRAT) Nitrogen Application farm. This farm represents a historically
well-documented corn growing quarter section. The USDA VRAT site is used to systematically
study nutrient stress in corn by varying inter-plot application of fertilizer. The field has four
replicates of five plots, which vary by nitrogen treatment from 0-kg/ha to 200-kg/ha in 50-kg/ha
increments. The treatment plots are set out in a randomized, complete plot design.

Typically, the VRAT is planted in a ridge till, monoculture corn and is watered by a
central pivot irrigation system that is on a three-day cycle. Since water stress can increase
spectral reflectance from corn leaves (Wooley, 1971), it is important that the field be adequately

watered so that only nutrient-related stress will predominate. Figure 1 shows imagery of the

USDA VRAT site with the fertilizer amounts for each plot shown.
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Figure 1. ATLAS near-infrared image of USDA VRAT study site.

Low-altitude AVIRIS hyperspectral imagery was acquired over the Shelton, Nebraska,
VRAT site on July 22, 1999. The overflight produced 3 m pixels with 224 spectral bands.
Ground personnel supported the mission with measurements at the time of the overflight.

The Atmosphere Removal (ATREM) Program (Gao et al., 1992) was used to perform an
atmospheric correction on the data. The AVIRIS imagery after ATREM correction is output as
relative reflectance. This relative reflectance file was scaled by an empirical line procedure to

provide reflectances that matched closely those measured in the field.

1.1 Spectral Band Considerations

Using AVIRIS image data from the MAC Europe 1991 campaign, Clevers (1999)
determined that the 224 bands of spectral information over agricultural sites could be
compressed significantly by performing a principal component analysis (PCA) on the data.

Clevers (1999) determined that 3 factors explained 96.8% of the total variance in the dataset. The




first factor comprised a broad spectral band in the near-infrared (NIR) region that ranges from
about 730 nm to 1350 nm. The second factor comprised two distinct spectral regions. The first
region is in the visible region from about 500 nm to 700 nm, and the second region is in the
short-wave infrared (SWIR) region that runs from 1500 nm onwards. The third factor is
associated with a few bands around the red-edge region, or around 717 nm.

Thenkabail et al. (2000) has recommended a set of hyperspectral bands for agricultural
studies. The total spectral range of the 12 bands described run from about 495 nm to 1025 nm.
For each of the 12 band sets, a description of associated physical mechanisms that are involved
for each specific spectral range is included.

In comparing the work by Clevers (1999) and Thenkabail et al. (2000), their spectral
band sets, as might be expected, overlap. The bands 1 through 4 recommended by Thenkabail
describe the green peak region. The bands 5 through 8 cover the red-edge region. Therefore,
Clevers® second factor involves the first eight bands suggested by Thenkabail. Similarly,
Clevers’ first factor involves the final four band sets recommended by Thenkabail. These final
four band sets are associated with the heightened “plateau” reflectance past the red-edge rise
(Thenkabail's bands 9 and 10) and with water-sensitive bands (Thenkabail's bands 11 and 12).

The SWIR region, which Thenkabail et al. (2000) does not consider, is found to be
significant in Clevers’ analysis. Interestingly, Kokaly (2000) has shown leaf nitrogen
concentration is assessable because of an absorption-broadening feature in the SWIR.
Apparently, this is associated with plant protein amide bonds. Furthermore, the SWIR region is

known to provide some sensitivity to certain soil characteristics, including relative soil and plant

leaf moisture (Goetz and Boardman, 1995).




In this study, the band sets alluded to above -- namely, the green peak, the red-edge, the
water sensitive bands, the NIR region, and the SWIR of Clevers (1999) -- will be considered.
Furthermore, the entire Clevers band set and the less expansive band set of Thenkabail et al.

(2000) will also be included. Table 1 provides a summary of these band set spectral ranges.

BAND SET SPECTRAL
BAND SET NAMES RANGES (NM)
Green peak 490 - 570
Red-edge 660 - 720
NIR 810 - 925
Water Sensitive 980 - 1000
SWIR 1500 - 2250
Clevers Total Band Set 117 bands (500 - 2250 nm)
Thenkabail et al. (2000) | 12 bands (490 - 1025 nm)

Table 1. Band sets used in present study.

2.0 Band Moment Methodology Background

Image compression has acquired enhanced importance with the advent and availability of
high spatial resolution multispectral imagery as well as the prospect of further hyperspectral, and
even ultraspectral, advanced sensors on the horizon. The immediate goal of any image
compression technique is to represent image data in the smallest number of bits. This allows an
increase in processing speed and minimizes storage constraints. Both of these outcomes are
especially important if fast turnaround of remotely sensed image data to product form is required
to satisfy customer needs.

Compression, or coding, of an image can be either lossy or lossless. Lossless coding of an

image would imply that no data is lost from the original image in the compression process. When



a compression technique is lossy, some of the image detail is permanently lost in the
transformation to a compressed dataset.

The use of band-moments to characterize spectral imagery represents a form of lossy
compression. The loss of information is a trade-off between information entropy and increased
efficiency. If compression efficiency were defined in spectral terms, then the spectral
compression efficiency might be defined as the simple ratio of the number of input sensor bands
to the number of output bands provided by the compression algorithm. For instance, by
generating eight band-moments to statistically characterize an AVIRIS image cube, a spectral
compression efficiency of 224/8, or 28 to 1, is achieved.

A band-moments approach to hyperspectral image coding has been reported in the
literature (Rundquist and Di, 1989; Staenz, 1996). Following these authors, eight (8) moments
were computed. The germane moments are the following: 1) the ordinary moment, 2) the mean,
3) the second central moment (standard deviation), 4) the third central moment, 5) the fourth
central moment, 6) band skewness, 7) band kurtosis, and 8) the band concentrated moment. In
the aforementioned studies and the present one, band-moment compression of hyperspectral
imagery has shown robustness with very little coding delay and is, of course, scalable.
Additionally, Rundquist and Di (1989) found that the use of band-moment compression reduced
sensor noise and, in their case, improved image quality.

Foundationally, Papoulis (1965) has shown that if the spectral reflectance is finitely non-
zero and piecewise continuous, then statistical moments of any order exist and are unique.

Hence, the band-moments associated with a set of spectral reflectances uniquely characterize that

spectral dataset, and conversely (Rundquist and Di, 1989).



For the present work, a compressed spectral dataset will be evaluated for its crop stress
detection capability by comparing relative outcomes between it and the original uncompressed
spectral dataset from which it was derived.

It is interesting that an observer at the USDA VRAT field can visually detect the
difference between the untreated and the 50-kg/ha plots and the controls, which are represented
by 200-kg/ha plots. However, the 100- and 150-kg/ha plots are not readily differentiated from the
controls by the human eye. This implies that, if relevant imagery can be processed so that this
separation becomes possible, then pre-visual stress detection would have been attained. Pre-

visual crop stress detection is a significant goal of crop stress research.

3.0 Approach

In this section, an overview of the analysis applied to the AVIRIS imagery will be given.
In the next section, results generated from the analysis outlined here will be presented.

For a given band set from Table 1, AVIRIS imagery of the VRAT was used to extract
region-of-interest (ROI) data from the different N-treatment plots. These extracted data were
compiled and employed to compute eight band-moments, which in effect compressed the
selected input band set (Table 1).

Compressed and uncompressed forms of the spectral band sets listed in Table 1 were
used to compute the Euclidean and Bhattacharyya spectral class distances for the different
N-treatment plots (the plots taken as classes). The ;pectral distances were used to determine
whether the compressed band-moment band sets provided comparable separation of the VRAT

N-treatment plot classes when compared to the original non-compressed band sets.




The spectral band sets of Table 1 were then ranked in order of those providing the
greatest relative, spectral class (N-treatment plot) distances -- considering only the band-moment
band sets -- for both the Euclidean and Bhattacharyya results. Then the eight moments associated
with the top ranked band sets were plotted as box and whisker plots to determine which band
moments appea;ed to show the greater sensitivity, or variation, as a function of N-treatment. The
resulting band moments could then be compared to those previously determined by Staenz
(1996). He performed a somewhat similar analysis upon a European agricultural dataset.

Band moments that proved more sensitive than others for a given Table 1 band set were
used as single band images, in transforﬁlations, or in band ratios to produce imagery for the
detection of crop stress. Possible band ratio forms paralleled those already known for use in the
detection of plant stress. Such ratio forms might include versions of’ the Ratio Vegetation Index
(RVI) (Jordan, 1969), Normalized Difference Vegetation Index (NDVI) (Ronse, 1973), Gitelson
and Merzlyak (1996), or Schepers et al. (1996) algorithms. In the present study, the results for
the Gitelson and Merzlyak (1996) and NDVI band ratio paradigms are provided.

A statistical comparison is made between uncompressed, AVIRIS hyperspectral band
ratio imagery and the associated band-moment ratio imagery. Statistical testing using ANOVA
methods and follow-on Dunnett multiple comparison tests are used to determine whether the
band-moment, compressed band ratio imagery retains a separation of the N-treatment plots from
the controls when compared to the uncompressed, hyperspectral band ratio imagery.

Supervised classification methods are exercised upon the uncompressed AVIRIS band
sets of Table 1 and their associated band-moment band sets independently. A Figure-of-Merit
comparison is made on the resulting classification images to assay the effects on crop stress

detection by the lossy band-moment compression method.



4.0 Results and Discussion

The spectral distance results between the N-treatment plots (classes) for the Euclidean
and Bhattacharyya distance measures were interesting. The Euclidean distance measure
considers only the distance between class means and does not account for the potential overlap
of classes (Thomas et al., 1987). The Bhattacharyya distance includes consideration of the
spread, or variance/covariance, between the different class statistics in the computation of
relative class separability.

The Euclidean distance computation results showed that the band-moment bands
provided increased interclass separation compared to the original bands themselves for all the
spectral band sets considered (Table 1). However, when Bhattacharyya distances were computed,
the band-moment band sets fared less well. The spectral distance between classes for the band-
moment bands only bettered the class separability of an uncompressed AVIRIS band set from
Table 1 if the total number of bands of the original band set was equal to, or less than, the fixed
eight bands that composed the band-moment band set.

The ranking outcome based upon the relative Bhattacharyya spectral distances
(magnitudes) between the N-treatment plots for the band-moment band sets of Table 1 are as
follows: 1) red-edge, 2) SWIR, 3) green peak, 4) NIR, and 5) water-sensitive bands of
Thenkabail. If the compressed forms of the complete band sets suggested by Clevers (1999) and
Thenkabail et al. (2000) are considered as well, then the spectral distance rankings would place
them first and second, respectively, with the other band sets following as listed.

The individual band moments for the above top-ranked band sets were plotted as box-
and-whisker plots, as a function of the N-treatment plots, for all spectral classes considered in

Table 1. Succinctly, it was found that the band-moments that showed greatest sensitivity, in



order, were the third central moment, the first moment (ordinary moment), and the eighth
moment (band concentrated moment) -- either singly or in combination. These results

corroborate the findings of Staenz (1996).

4.1 Single Moment Imagery for Vegetative Stress Detection

Given the sensitivity of these particular moments, especially that of the third central
moment, images displaying this computational result are interesting taken by themselves.
Figure 2 exhibits the third central moment of the mean for the green peak spectral band set of

Table 1. The third central moment is related to the skewness of a distribution. The equation for

the skewness in this context is given by Equation (1):
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Since Figure 2 is computed pixel-by-pixel over the scene, it provides an approximate measure of
the relative departure from a symmetrical distribution for the spectral brightness values that
compose each pixel. The greater the departure, the darker the pixel. This is due to the chloritic
nature of the more stressed regions in the field. The chlorosis causes a greater color variation
than that seen in the more uniform, better nourished plots. This variation translates as an
increased standard deviation, s. Since from Equation (1) above the skewness in normalized to s,
the greater the variance, the smaller the value of the skewness -- hence, the darker the pixel.

It is interesting to note that the untreated VRAT plots exhibit the highest departure

compared to the other plots present. In fact, it would appear that, in general, crop stress could be



associated with heightened asymmetry in the spectral distributions of the pixels that image a

stressed crop region.
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Figure 2. Third central moment green peak band set image of VRAT field.

As seen, Figure 2 shows considerable detail over the VRAT field. Broadly speaking,
there are two sorts of stress registered by the image. The first is the nutrient stress in the different
N-treatment plots. The second source of stress is water stress evidenced by a dark-toned band at
the north-central periphery (top and central portion) of the field. The dark-toned band is an area
that is deliberately water stressed by shutting off the central pivot irrigator as it passes over this
section of the field. The presence of this water-stressed region can aid in attempting to separate
one type of stress from the other. For example, Figure 3 shows the VRAT field in the eighth

moment image (band concentrated mean) for the water-sensitive band set of Thenkabail et al.

(2000).
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Figure 3. Eighth moment of water-sensitive band set.

The clarity with which only the water-stressed region is displayed as a dark-toned area,
while the nutrient-stressed areas associated with the N-treatment plots are comparatively muted

or displayed as brighter areas, suggests a possible methodology for separating these two types of

crop stress.

4.2 Band Moment Transformed or Used in Combination as Vegetation Indices

Different statistical moments for the different spectral band sets in Table 1 could be used
in combination. That is, different transformations or ratio formulations could be employed using
the band-moments band set of the compressed spectral image data. If the moments represent
statistical summaries of various aspects of the distribution of spectral brightness over several

bands, then the proposed indices may benefit from such aggregated measures. Of course, since
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the moments represent statistical summaries over a range of spectral bands, they will emphasize. - -

some'pﬁrédominate trend of the spectral data. If the spread of the brightness values around the - ;
central tendency of the spectral data is large, then the ratios formed could be considered, in
effect, broad bandwidth ratios -- even if the original image data represented hyperspectral
bandwidths. Conversely, if the spread of the brightness values around the central tendency of the
data clusters tightly around a specific wavelength, then the ratios would represent smaller
bandwidth ratios/‘-- ratios more akin to that of a hyperspectral dataset.

A principal component analysis could be run on the eight-band compressed, band-
moment band set. Since the PCA analysis stacks the output imagery according to the amount of
variance embedded in each image, with the image with greatest variance at the top of the output
set, then the initial image exhibits as brightest those spectral features that provide the most
variation in the scene. The next PCA image down in the output set is non-correlated with the first
image and will highlight features that provide the next-most variation in the scene, and so forth.
Embedded noise in the original imagery due to sensor and environmental sources increasingly
appears as one proceeds through the stack of output PCA images, since noise, itself, provides a
source of variation. The use of band-moment compression techniques serves to reduce the effects
of noise, since the process is generally one of summation. Moreover, the noise present often
tends to be Gaussian with mean near zero. So, when a band-moment band set is used as input to
a PCA routine, the band output tends to show little or no effect from noise. Rather, the images
move through a graded sequence of highlighting those image features that exhibit greater or

lesser variation within the scene. Figure 4 displays an image that represents the third PCA band

for an input green peak, eight-band, compressed dataset.



Figure 4. PCA band 3 of green-peak band-moment band set.

It is interesting that the image does not appear to show water stress effects. The stress
exhibited is that due to the light-toned, nutrient-stress differences in the various plots. This PCA

image represents a de facto separation of nutrient stress from water stress effects.

An example of a possible implementation of ratios is that of the third central moments of
the green-peak and red-edge bands. This ratio emulates, to some extent, the ratio of bands
suggested by Gitelson and Merzlyak (1996). Figure 5 displays the band-moment band set result

of the Gitelson and Merzlyak ratio.
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Figure 5. Third central moments of red-edge to green-peak ratio image.

As seen, Figure 5 provides considerable detail over the VRAT field. Certainly, the
untreated N-treatment plots are clearly depicted. The gfay tone scale provided within the image
indicates a relative stress measure. Sensitivity to the water-stress region at the northern periphery
of the VRAT field can be seen. Interestingly, the water-stressed area is a brighter region
compared to the nutrient-stressed plot areas.

To assess whether the band-moment band set provides relatively reliable crop stress
detection, a Gitelson-Merzlyak ratio image was computed using original, uncompressed AVIRIS
hyperspectral bands. To provide a quantitative, head-to-head evaluation of these two Gitelson-
Merzlyak images and their ability to separate the untreated, 50-, 100-, and 150-kg/ha plots from

the controls (200-kg/ha), an ANOVA (Haber and Runyon, 1977) was run on plot data extracted




from these images. The data was extracted using ROI selections for each plot type and then
compiling the result. In both cases, the ANOVA outcome allowed for the rejection of the null
hypothesis at the p < 0.0001 level.

The follow-on Dunnett multiple comparisons test (Siegel, 1956) determined that the
Gitelson and Merzlyak algorithm using the uncompressed AVIRIS bands could separate the 0-,
50-, and 100-kg/ha plots from the controls. The Dunnett multiple comparison for the
compressed, band-moment ratio image documented that the very same plots could be
distinguished from the controls. Hence, no loss of detection capability of vegetative stress
occurred.

A normalized difference approach, such as that used by an NDVI algorithm, could also
be implemented with selected band-moments. The NDVI algorithm aids in the removal of
additive noise sources -- provided the wavelength regiors associated with the band-moment in
question have similar noise magnitudes. For example, if the eighth moments of the water-

sensitive bands and the Clevers’ SWIR region bands are input to an NDVI ratio, Figure 6 is the

result.



Figure 6. Eighth moments of water-sensitive and SWIR band sets ratio image.

The imag: details crop stress but does not distinguish between nutrient stress and water
stress. Note that since the linear irrigator is on a three-day cycle and moves anti-clockwise in the
image, the area immediately in front of the movement of the irrigator shows signs of water stress,

since it has been two days since it received water.

Whereas the NDVI algorithm (Rouse, 1973) endeavors to subtract out additive noise in
the image data, ratio approaches, such as the RVI (Pearson and Miller, 1972), attempt to divide
out multiplicative noise. Semenov and Yefremenko (1999) have suggested a form that allows for
both additive and multiplicative noise removals. The form they provide is given as the following:

SALVI = {(bl - b2) (b2 - b3)}/ max {bl - b2)*, (b2 - b3)*} )

where “SALVI” stands for “Semenov Algorithm Vegetation Index” and bl, b2, and b3 are user-

selected wavelengths.
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The expression provided by Equation (2) is the form of a second moment of the
brightness differences in the respective channels and resembles the computation of a cross-
correlation coefficient for the respective bands. As can be seen, the expression will tend to
remove multiplicative and additive noises from the selected channels, provided the relevant noise
sources are roughly the same in all three channels.

Equation (2) was exercised with three band-moments as input bands. The band-moments
employed were the third central moments of the red-edge, green-peak, and water-sensitive bands.
For comparison, a similar computation using three analogous AVIRIS hyperspectral bands for
the green-peak, red-edge, and water-sensitive regions was generated.

The SALVI image result yielded virtually the same appearance as in shown in Figure 5,
with some slight differences. The SALVI image showed the water-stressed area as more clearly
defined. Also, the bare-field areas on the west and east side of the VRAT ﬁeld were shown
containing, apparently, some vegetation. As it happens, for the July 22 AVIRIS overflight, some
weed cover did, in fact, tarnish some portions of these bare-field regions. The comparable
AVIRIS, original-band, SALVI-type image did not show this.

Using ANOVA methods and follow-up multiple comparison tests, it can be shown that
both the compressed and uncompressed SALVI images can differentiate the untreated, 50-, and
100-kg/ha plots from the controls at approximately the same level of statistically accuracy. Thus,

the use of three band moments in place of three analogous AVIRIS bands did not detract from

stress-detection capability.

4.3 Supervised Classification Techniques and Class Discrimination



Using supervised classification techniques on both the band-moment band sets and the
original band sets from which they were derived (Table 1), an attempt was made to separate the
different N-treatment plots, or classes, from one another. Staenz (1996) used supervised
classification techniques (maximum likelihood and logistic classifiers) on a band-moment band
set to separate different field crops over a hyperspectral-imaged scene in Switzerland. His
classification accuracy using the compressed hyperspectral image data was only slightly less than
with the original hyperspectral image cube.

Figure 7 shows the result of applying the Spectral Angle Mapper (SAM) classifier
algorithm to the compressed band-moment band set (8 bands) of the Clevers total band set
referenced in Table 1. The SAM classifier was also applied to the uncompressed Clevers 117-
band image. Since the earlier computed Bhattacharyya distances were much higher for Clevers’
total band set, the expectation is that the larger band set, represented by Clevers’ 117 bands,
ought to allow enhanced class, or N-treatment plot, discrimination.

As can be seen, the image evinces varying degrees of stress, seen as an apparent
fertilization application, over the VRAT field. The SAM application to Clevers’ uncompressed
band set image, using the full 117 bands, appedred virtually the same. Hence, although the
Bhattacharyya distance computations for Clevers’ original 117 bands are larger than those for the
eight bands of the derived band-moment band set, the spectral class distances provided by the

band-moment band set are apparently enough for the SAM classifier to provide satisfactory

separation of the N-treatment plots.
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Figure 7. SAM classification im%tge of Clevers’ band-moment, or compressed, band set.

To show this quantitatively, averages and standard deviations of image data for the
classified N-treatment plots were taken from both classification images. These mean and
standard deviation values were scaled to an effective mean fertilizer application for each plot of

the respective images. Figure 8 provide plots of these results (solid line represents the

compressed image data).
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Figure 7. SAM classification image of Clevers’ band-moment, or compressed, band set.

To show this quantitatively, averages and standard deviations of image data for the
classified N-treatment plots were taken from both classification images. These mean and
standard deviation values were scaled to an effective mean fertilizer application for each plot of

the respective images. Figure 8 provide plots of these results (solid line represents the

compressed image data).
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Comparative Classification Accuracy Plot: Clevers Total Band Set

0 Mean Deviation (Error): (units: kg/ha)

117 Bands Classification = 16.12
Band Moment Classification = 17.32

200w

izer Treatment (units: kg/ha)
1
i\

|
|
|
|
!

|
Figure 8. Figures of Merit for Clevers’ total band set and associated band-moment band set. l

As shown, the band-moment classification image, in terms of an apparent fertilizer
application, compares favorably to the classification image that represents Clevers’ total band
set. The one principal offset is the 100-kg/ha plot value.

The mean deviation for all the points is computed and displayed on the graph for each
plot separately. This provides an overall Figure of Merit on the relative quality of the
classification accuracy.

The results, provided in Figure 8, corroborate Staenz’s (1996) findings that a band-
moment classification image has a somewhat lower classification accuracy when compared to an
original band set classification image. Nonetheless, a gain is achieved in spectral compression,

which translates into reduced storage requirements and shortened processing time for acquired

imagery.
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5.0 Summary and Conclusions

An AVIRIS image cube was subjected to compression using a band-moment
methodology. Eight bands composed the compressed band set. These bands represent statistical
moments that statistically summarize a given spectral band set.

The compressed and uncompressed band sets of Table 1 were compared to determine
how the band-moment compression method affected the ability to detect crop stress (in corn)
over a USDA test field. Since the band-moment compression procedure represents a lossy
compression method, it was expected that some degradation of crop stress detection capability
would occur.

The band-moment results derived from the compression process were analyzed in various
ways. These band-moments were used as single band images for crop stress analysis, in
transformation (PCA), and in ratio combinations to form nove! vegetation indices.

The compressed band set was used as input to a standard SAM classification routine that
generated a satisfactory classification image when compared to a similar classification image
using the entire 117 bands of the original hyperspectral dataset.

In general, band-moment compression and analysis provides at least as good, or slightly
less, capability for detecting crop stress than does the original band set from which it was
derived. The benefit of the approach comes in increased noise immunity, decreased storage

requirements, and increased speed of processing -- especially when dealing with multiple

hyperspectral image cubes over extensive areas.
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